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INTRODUCTION 
The Hyperbolic Programming Problem 

In general, the role of mathematical programming can be summed up as follows:   We 
are looking for a nonnegative solution of the variables u., uo> • • • > u

n which satisfies the 
inequalities 

fl(ul'V--un) s 0 

and which maximizes the given function v = v(u,, u« ... u^j. 
A special case of this problem is known as linear programming, where the functions 

f j ... f     and v are linear.   In this situation the given inequalities are 

^^•••■^In^^lO- 0 

am1u1 + . . . + am„u„ - a« s 0 , ml  1 mn n       mO ' 

•This paper, which was written un^inally in Hungarian, represents a translation of the original 
document, published by the Hungarian Academy of Sciences in Publications of the Math. Inst. 
Hungarian Acad, Sei., 5, 383-40b (196C>. The translators are grateful to Dr. Martos and to 
Professur W, W. Cooper for reviewing this transl ition and making numerous suggestions for 
its  improvement. 

This translation was undertaken as part of the contract "Planning and Control of Industrial 
Operations," with the Office of N.ival Research at the Graduate School of Industrial Adminis- 
tration, Carnegie Institute of Technology, Management Sciences Research Group. Reproduc- 
tion of this paper in whole or in part is permitted for any purpose of the United States Govern- 
ment. Contract Nonr 11 10^4. 
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136 BELA   MARIOS 

which can be written as u.a. + u„a 1a1 + u2a2 + • • • Vn a , or in the following vector inequality 
foi tn Au s a .   The function v can be written as v = CJUJ + . . . + c^ - c0 or v = c*u - c0. 

For the solution of this problem, as it is known, Dantzig discovered the simplex method, 
which we presume to be known in what follows [2,3]. 

This study discusses another special case of mathematical programming, namely, when 
the functions f. . 
graph of 

f_ are linear and toe function v is a linear fractional function, m Since the 

ex 
y = 

dx - d. 

which is a one-variable linear fractional function, is hyperbolic on the (x, y) coordinate sys- 
tem, we call this a hyperbolic programming problem. 

We will show that the problem of hyperbolic programming can be solved with the aid of 
a slightly modified simplex method. 

The method, to be explained, seems useful in the solution of economic problems where 
the different economical activities utilize fixed resources in proportion to the level of their 
values; the purpose of optimization, however, is not the definition of a revenue, allocation or 
economizing extremum (as it is with linear programming), but the extremum of a specific 
index number, and usually the most favorable ratio of revenues and allocations. 

On the basis of this the problem of hyperbolic programming is the following:  We are 
looking for the vector 

u = 

which maximizes the function 

(1) v{u) 
x(u) 
y(u) 

c*u 

d»u - d. 

a    and u ^ 0.   The set of those points that satisfies the subject to the constraints Au 
constraints we will call the set of feasible solutions and designate it as  L 
known that L is a closed convex set with a finite number of extreme points. 

It is well 

Preliminary Observations 
1.   The necessary and sufficient conditions to reduce a hyperbolic programming prob- 

lem to a linear programming problem could be easily defined.   (I.e., the points of set R, to be 
defined later, should fall on the same line.)   In practice, however, we do not think it necessary 
to exclude beforehand all degenerating cases, but we will exclude the following two trivial 
cases, (2) and (3): 
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The set L such that 

(2) y = d*u - d    = const. 

This is a linear programming problem.   (If y • 0, then the problem has no meaning.) 
The set L such that 

(3) x(u) = voy(u), 

where v = const. Thus on the entire set of L, v(u) = v except for the common 0 points of 
x(u) and y(u) where, however, the function is not interpreted. In this case the programming 
problem has no meaning. 

2. When the problem is not to find the maximum, but the minimum of the function v, 
we may equivalently consider the problem of maximization of (-v). 

3. We will assume, throughout, that there exists at least one point in the set L such 
that y(u) is positive.  This can be done without loss of generality since we may always con- 
sider the function v = -x(u)/-y(u) instead of v = x(u)/y(u).   (We have already excluded the case 
y H 0 in (2).) 

Geometrical Interpretation 
The problem can also be formulated as follows: 
Let us consider the following transformation: 

(4) 
'xi    rc*i       re " 

u -      0 

The transformation, as can be seen, consists of a linear transformation and a parallel shift. 
The transformation in (4) maps 

L = {u|Au 5 a   , u ^ 0} 

a closed, convex set with finite extreme points to 

R = {w(u)!utL} 

along the set of the (y, x) plane.   (As an exception we choose the y axis to be horizontal.)   We 
can say the following about the set R: 

1. It is closed and convex; 
2. Each extreme point of the set R is an image of at least one extreme point of the 

set L; 
3. It has a finite number of extreme points; 
4. If L is convex polyhedron then R is a convex polygon; and 
5. It has a point on the open half plane y > 0 (by "Preliminary Observations"). 

Statements 1 and 2 are derived directly from the known properties of linear transformations, 
and 3 and 4 from the previous statementr. 
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Figure   1 

Let us consider the (y, x) plane.  The value 
of the function v(u  ) = x(n )/y(u ) for some point 
u   in the set L can be found as the tangent of the 
angle a    which is constructed by drawing a half 
radius from the origin to the point w  , which in 
turn is the image point of some point u  .   (See 
Figure 1.   The dotted line indicates the case when 
R is bounded.)  Thus the problem is to find such a 
point of the set R, the direction tangent of which is 
maximal, or to find such points of set L which were 
transformed to such mu ximal points of set R.* 

THE SIMPLE CASE 
The Conditions of the Simple Case 

To simplify further discussion, we will present a simple case where the essence of the 
method to be applied may be observed.' 

We will call the hyperbolic programming problem a simple case If It satisfies the fol- 
lowing two conditions: 

1. The set of possible solutions Is bounded (therefore it is a convex polyhedral set, 
designated as P); and 

2. The denominator will not be 0 on the set P.   This constraint along with the assump- 
tion in the second section (Preliminary Observations) — considering the continuous function y — 
means that on the entire set P, 

(5) y = d*u - d      0. ' o 

In the case of economical programming problem, the first condition means thai none of the 
economical activities to be programmed can be unbounded.   The assumption in the second con- 
dition excludes the possibility of the optimal value of the program becoming infinite.   It can 
be seen that these conditions correspond to practical assumptions.   Even for this reason alone 
the discussion of the simple problem has a practical interest. 

Theorem Concerning the Maximum of Function v for the Simple Case 
With the aid of the simplex method, we can examine the value of a function on the verti- 

ces of a convex polyhedral set.   By the following theorem it is possible to apply the simplex 
method to the simple hyperbolic programming problem. 

♦There   is   .mother   pow-iible   geomelncdl   inte rpretatiun.     Let   u*   observe   the   faxnily of hyper 
planes  vihich is defined by 

:      -   'd   . 1 HJJUJ   ♦ (c2 r,)u2 * d   )u 

for different values of the parameter We  are  looking lor  an element of the family of hyper- 
planes, at which the value of the parameter ' is both maximal and has a common point vnth 
the set L. O'jviously, the optimal hyperplane contains an extreme point from the set L. The 
difference between the usual geometrical interpretation of linear programming and this case 
is that in the former the family of hyperplanes is parallel and in the latter it is not. This in- 
terpretation of the problem wa:i worked out by Andras Prekopa. We will, however, employ 
the two dimensional transformation for the sake of simplicity in what follows. 

'We consider it probable that the majority of the practical -conomical problems will satisfy 
those conditions which will be applied in this case. 
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THEOREM 1:    If the linear fractional functional 

c*u - c,, 
v(u) =  ? 

d»u - d o 

has the following properties: 
1. the area of definition is a convex polyhedral P defined by an Au s a   , u 2 0 con- 

straint; and 
2. on the set P, 

y = d*u-d0> 0, 

then the function v has a finite maximum on the set P which is achieved on at least one vertex 
of the polyhedron. 

PROOF OF THEOREM 1:    Let p., P2 •   • P8 be the vertices of the polyhedral P. Then, 
as it is known, any z of P can be written as a convex linear combination of these vectors, 

(6) z =tlPl*ßtf>2*"'+ßJ8 

where 

>i1*ß2 + ... + tia = 1 

and 

— 0,     i = 1,2, ... s. 

Let us assume that anion£ the vertices, the value of the function v is the greatest at 
Ph, ie., 

(7) vö^)   - vIp,)      1 = 1, 2, ... s, 

that is 

x(ph) y(Pi) - y^' "(Pi^ 

Multiply both sides by ,i and add from i = 1 to i = s 

(8) xlpi,) IViYfci) - y(Ph) -i^i x (Pj) • 

According to the following representation and by considering (6), 

VW = Vi(dVdo) sd'ViPrdoVi 

= d»z - d0 = y(z); 

similarly, 

^ ßi x (pj) = x(z). 
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Therefore, from (8) 

from which follows 

BELA  MARTOS 

x(Ph) y{2) ^ y(Ph) x (z). 

V(ph) 2 V(z) . 

With thlB we proved our theorem and also the fact that with the aid of the simplex 
method there exists the possibility of solving a simple hyperbolic programming problem. 

The Solution of a Simple Problem by the Simplex Method 
We want to have an algorithm with the aid of which the number of necessary steps In 

the simplex method can be decreased and the cyclic iteration can be avoided. 
In what follows, we assume that the inequalities have already been converted to equations 

by the known method of introducing slack variables.   Then we can write the equations in this 
form Au ■ a .   Let uo assume that we know a basic solution of the problem containing m positive 
components.   Let us further assume that exactly the first m components are positive.   Then the 
basic vectors are a,, a„, .... a   . 

i    £ m ror each a. (1 = m + 1, m + 2, ..., n) let the coordinates in terms of the basic vectors 
be bjj, b*.» ..., bmi and for a   the coordinates are u., u», • • •» u

m • 
Let 

xi = clbli+-- + cmbmi-ci' 

yj =d1bli + ...*dmbrol-d1, 

(i = m + 1, m + 2, ..., n), and 

tj = ^yi - y^ • 

(If aj Is a basis-vector, then b^ = 0, if i •* j; bjj = 1, and accordingly x, = y, = t. = 0.) 
Now we can write the following simplex tableau which is an extended one compared to 

the one used in linear programming: 

v co ci c2   . •   cm cm+l ■   ck       • • •   cn 

V do di d2   • •   dm dm+l •   \      • • •   ^ 

basis ao ai a2   . am+l •   \      • 

cl dl al ul i 0 .    0 bl,m*l   • •   blk     • • •   bln 
c2 d2 a2 u2 0 1 .    0 ^.m*1    • •   b2k     • •  •   b2n 

cm m am um 0 0 .  1 m,m+l ' •   bmk   • 

• 

■     mn 

xr X 0 0 .   0 xm+l •   \      ■ • •   xn 
xr y 0 0 .   0 ym+l • yk   • • •   ^n 

V x/y 0 0     . .   0 tm*l •   He        • • •   'n 
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The arrangement of the known data is understood from the tableau.  Into row t. of col- 
umn a    we write the function value v ■ x/y given by the current basic solution. o 

Let us view the positive coordinates of the vector a.   and let 

uj 
min      _ = ö . 

(bjk > 0)  b)k 

We have assumed that u^ > 0, therefore Ö > 0.   (We will return to the question of degeneracy.) 
As is known, the value of the linear functions x(u) and y(u) becomes 

x'  = X - fix. 

y' = y - öyk 

after the vector a.   has been brought into the basis. 
Thus by exchanging the basis-vector the changed value of the function v is: 

x - ö> 
v"  = 

y - «YL 

v' becomes greater than v, i.e., the changing to the new basis means approaching to the maxi- 
mum if 

x-öxk 

y - öyk    y 
-*>(,. 

or 

aK-y\) >0 
y(y - öyk) 

Considering that in the case examined y  ' 0, y - 5y.   - 0, and Ö  > 0, we can say the following: 
if we bring into the basis a vector a. having a positive coordinate for which the t. is positive 
in the last row of the simplex tableau, t, * xy. - yx, > 0, then the value of the function v will 
increase. 

Therefore the simplex method employed in hyperbolic programming consists of bring- 
ing into the basis successively all positive t. vectors (if they have positive coordinates).   The 
method of calculating all u,, b.., x , y , x., y. values corresponds to the one used in linear 
Programmmg; only v = x/y and t. » xy. - yx, have to be computed by using these special 
formulas. 



142 BEL A  MAR TOS 

Since (1) the number of vertex points are finite, (2) the bringing in of each vector char- 
acterized by ti > 0 increases the value of v, and (3) the function v will reach a maximum 
value at a certain vertex point, we must achieve an optimal solution after a finite number of 
steps by bringing the positive t. vectors into the basis. 

The tableau containing an optimal solution is an optimal tableau.   From the above it 
follows that in the optimal tableau all t. = 0.  During the discussion of the general case (section 
entitled "Application of the Simplex Method to the Solution of the 'Good' Case of the General 
Problem," tableau 2) we will prove that this condition is sufficient:  Each such tableau that 
contains t.=0 is an optimal tableau. 

The number of computations necessary to solve a simple hyperbolic programming prob- 
lem with the aid of the simplex method exceeds only by a small percentage the number of oper- 
ations required for a linear programming problem of the same size.  Programs for digital 

computers can be applied, with a slight alteration, to hyperbolic programming. 

THE GENERAL PROBLEM 
Definitions — Existence Theorems 

In the case of the general problem we do not assume that the set L is bounded or that 
the denominator has no 0 point on the set L.  What makes the discussion of the general problem 
necessary, as we will later see, is the fact that in certain cases where the conditions for the 
simple problem are absent the problem may still have an optimal solution even though the set 
L is unbounded or the denominator becomes 0. 

Definitions. 
1. We will call the "good" point of the set L where either y(u)  > 0 or y(u) = 0, x(u) < 0. 

(According to the third observation under "Preliminary Observations," L always has a "good" 
point.) 

2. We will call the "bad" point of the set L where either y(u) < 0 or y(u) = 0, x(u) > 0. 
3. The singular point of the set L is at y(u) = x(u) = 0. 

Therefore, in the transformation of the third section (Geometrical Interpretation), the good 
points are mapped on the inside of quadrants I and IV, on the positive side of the y axis (hori- 
zontal), and on the negative side of the x axis; the bad points are mapped on the inside of 
regions n and ID, on the negative part of the y, and the positive part of the x axis; the singular 
points are mapped into the origin. 

We will prove the following theorems: 

THEOREM 2 ("BAD" CASE): If the set L has bad points then the function v ia not 
bounded from above, and the programming problem has no optimal solution. (See Figures 2 
and 3.) 

THEOREM 3 ("GOOD" CASE):    If the set L has only good points and the function v 
has a finite maximum on the set L, then this is taken on at least one extreme point of the set 
L.   (See Figures 4 and 5.) 

THEOREM 4 (SINGULAR CASE):    If the set L has no bad points, but has singular 
points (and naturally good points) then it has a good point where the function v takes on a finite 
maximum value.   (See Figures 6 and 7.) 
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\  R 

Figure Z Figure 3 Figure 4 

.^ 

Figure 5 Figure 6 Figure 7 

Proof of the Existence Theorems 

PROOF OF THEOREM 2 (BAD CASE): On the basis of the statement supporting Eq. 
(3), for each bad point (P ) of the set L we can choose such a good point (PJ that on the line 
segment P P, connecting these two points there will be no singular points.   Therefore the line 

segment P'P,' (the image on the plane of P-Pi) has a P' common point with the x axis which 
is different from the origin.   If P' is on the positive x axis, then in the quadrant I, if it is on 
the negative x axis then in the quadrant III we can choose along the line segment P'P' such a 
series of points converging to P", along which series the direction tangent grows through posi- 
tive numbers beyond ail limits.   Therefore the function v is ,iot bounded from above, and the 
programming problem has no solution. 

The theorem, of course, can be proved without the geometrical interpretation; however, 
we will exclude this method of proof. 

PROOF OF THEOREM 3  (GOOD CASE):    The theorem can be considered as the gen- 
eralization of Theorem 1.   Since if we do not declare the set L bounded, then the function v 
does not always have a maximum on the set L.   Furthermore, as we will see, the function v, 
bounded from above, is not a sufficient condition for the existence of the maximum. 

Those points of the set L for which y = 0, x •   0 cannot be optimal.   These points we 
can approach only by such points the images of which are in quadrant IV.   This way, however. 
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the function v becomes Infinite only through negative values, therefore It does not reach a 
maximum value.  Consequently, It Is sufficient to prove Theorem 3 for those points only for 
which 

(9) y(u) - d*u - d0 > 0. 

PROOF:    Let p., p«, ..., p   be the extreme points of the set L and the value of v be 
the highest at ph, I.e., 

(10) v(Ph)-v(pl)' 1 = 1,2, ...s. 

We prove that if the set L has a point z where tb > function v is greater than at the 
chosen p.  extreme point. I.e., 

(11) v(z)>v(ph), 

then it also has such a point z where 

(12) v(z)>v(z). 

Obviously z cannot be an extreme point of the set L.   It follows that we can choose a pK 

extreme point to point z, and a number a > 0 so that if q = z - p , then z = z + aq 
= (1 +fl)z-ap   should still be a point of the set L; however, 

c*z - c        (l+o)c*z - ac*p   - c        (l+o)x(z) - ox/p ) 
(13) v(z) =   2 )-^ . 

d«z - d0      'l+a)d*z - od*p   - d0      (1+ n)y(z) - ny/p j 

From (11) and (10) it follows that v(z) > v^p j, I.e., x(z)y[p ) > x/p ]y(z).   When both sides 
are multiplied by (-or) and when (l + n>)x(z)y(z) is added we obtain 

x(z) (l+a)y(z) - oy^pg)   <. y(z) (1+a)x(z) - ax(pgj 

Equation (12) follows from this by considering (13).   Thus the theorem Is proved. 
As far as the maximum of the function v is concerned the theorem permits three cases: 
1. The function v reaches its maximum on the set L and It is reached on some ex- 

treme point of the set L (Figure 4). 
2. The function v is not bounded on the set L from above (Figure 8). 
3. The function v is bounded from above on the set L, but it does not reach Its maxi- 

mum (Figure 9). 
These cases will be differentiated by examining the extreme points in a way to be given 

in the section entitled "Application of the Simplex Method to the Solution of the 'Good' Case of 
the General Problem." 
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Figure   8 Figure   9 

PROOF OF THEOREM 4 (SINGULAR CASE): 
This theorem will be proved by the presentation of the optimal solution in the section 

entitled "Solution of the Singular Case." 

Preparation of the Solution:   Differentiation of the Cases 
The hyperbolic programming problem solved by the simplex method can ^e Initiated in 

the following steps:* 
1. We define a starting solution by the same method that is used 1" linear programming. 

(The Inequalities are converted to equations by the introduction of slack variables, and so on.) 
2. We examine the y value belonging to the starting solution — (a) if y is positivo we 

proceed to step 3; (b) if y is negative we proceed to functions (-x) and (-y) Instead of func- 
tions x and y and continue with step 3; and (c) If y is 0 we see if the value of y could be in- 
creased by bringing any vector into the basis.   If it can be increased we proceed according to 
(a); if it cannot be Increased, only decreased, we act according to (b); If it cannot be either in- 
creased or decreased it corresponds to the excluded case y i 0. 

3. With linear programming we start searching for the minimum of the function y — 
(a) if in the meanwhile we reach a negative y value we Interrupt the procedure, there is no 
solution (Bad case); (b) if min y     0 then proceed to step 5 (Good case); and (c) if min y = 0 

then proceed to step 4. 
4. We add to the original given equations another condition, 

dM = d0, 

and find, with linear programming, the maximum of the function x taking the added conditio.s 
Into consideration' — (a) if, in the meanwhile, we reach a positive x value we Interrupt the 
procedure, there is no solution (Bad case); (b) if max x ^ 0, then proceed to step 5 (Good case); 
and (c) if max x = 0, then proceed to the procedure to be described In the section entitled "So- 
lution of the Singular Case." 

*lt  we know from the  character u( the problem that nun y      0 then these  imli.itinn steps .ire not 
needed. 
I.e.,  we  .ire   bringing those   .1^   vectors   into the   basis  (or  which   yj^       0,    x^       U. 
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5. In the course of the linear programmirg procedure, performed in step 3, we com- 
pute the corresponding v = x/y value for each tableau. If 3(b) or 4(b) were the case, it would 
be best to choose as an initial tableau the one corresponding to the highest v value. 

In case of a more complex problem, steps 3 and 4 should be performed by a computer. 

Application of the Simplex Method to the Solution of the 
"Good" Case of the General Problem 

It follows from Theorem 3 that in order to obtain an optimal point it is sufficient to 
examine the extreme points of the set L.   Therefore the simplex method can be applied. 

We remind the reader that in the section entitled "The Solution of a Simple Problem by 
the Simplex Method," we did not use the assumption that the set L is bounded and furthermore 
we needed only the milder assumption y - 0 instead of y > 0. 

This assumption (y = 0), however, holds for the "good" case of the general problem. 
Accordingly, the Simplex Method can be applied without alteration.   What we do not know at this 

point is whether the problem has an optimal solution.   Through the procedure, however, we will 
find the answer. 

In the course of the procedure we may obtain the following tableaux: 
T.l.   In the last row of the tableau there is a t    • 0 such that the corresponding a. 

vectors have positive coordinates.   In this case the given tableau is not optimal and the proce- 
dure is continued by bringing vector a.   Into the basis. 

T.2.   There is no positive number in the last row of the tableau, all t "   0.   In this case 
the function v reaches its maximum on the set L and the solution is optimal. 

T.3.   There is a t^   ■ 0 in the last row of the tableau, but one of the corresponding a. 
vectors has no positive coordinate.   In this case the function v does not reach the maximum on 
the set L, and the programming problem has no solution.  We interrupt the procedure. 

As can be seen, these three cases are identical with the ones in linear programming. 
The only difference is that in the case of T.3 the function v can be bounded from above, while 
the corresponding linear function cannot be.   (See the discussion of the case T.3, below, and 
Figure 9.) 

Proof for the T. 1 Case.  Our statement about the T.l case does not need to be proved 
according to the section on tae simplex method of solving simple problems.   From the finite 
extreme points of the set L it follows that the T.l type tableau may occur only in a finite num- 
ber of steps; and afterwards we must arrive at a T.2 or T.3 type tableau. 

Proof for the T.2 Case.   Let us assume that 

u* ^UpUg, ...,um,o o]; 

a possible solution appears in the tableau, i.e., 

m 

(14) ^Vi=ao' 

and there is no positive number in the last row of the tableau, i.e., 

(15) tj - x(u)yl - y(u)xl -   0      (i = 1,2,. ..,n). 
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We prove that if z* = lz., Zj, . .., z  1 is a possible solution, i.e., 

n 

(16) ^ziai = V 
1=1 

then 

(17) v(u) -- v(z). 

Any a.  vector on the a., ..., a     basis can be expressed as 

m 
ai = Z. bjtaj' (1 = ^Z.-.-.n); 

inserted into (16) this gives 

n n m m    / n \ 

11 ziai = llz\ll bi.aj= H (H zibjt) aj= v 
1=1 1=1       j=l j=l\i=l / 

If we combine this with (14) (and consider that a    can be expressed only uniquely on the 

aj, ..., am basis) we get 

n 

as) Z^iW 
i=l 

By multiplying (15) by z.  and adding from i = 1 to i = n, we get 

n n 

(19) x(u) 2^ y^i - y(u) 21 x.Zj. 
i=l i=l 

Considering the definition of y. and (18), we may transform 

n 

^ yizi 
i = l 

in the following manner: 

n n/m \ m/n \n 

(20)      Ly.zi = 11(11 Vii-di]zi'lldALbijzi -L Vi 
(Cont.) i = l i = l \j = l / j = l       \i = l /      i = l 



148 SELA  MARIOS 

(20) 
m 

Lvr'o - 

=i        J 
H dizl-do 
i=l 

= y(u) - y(z) 

Similarly, 

(21) 
n 

2^ XJZJ = x(u) - x(z) 

1=1 

By using (20) and (21) and substituting into (19), we get 

that is, 

(22) 

x(u)(y(u) -y(z)J -- y(u) (x(u) - x(z)J, 

x(u) y(z)   • y(u) x(z), 

We consider that: 

1. y(u) = 0 is Impossible.   Since, if y(u) = 0 then x(u) < 0 and choosing a negative 

L  = •:(u)y.   - y(u)x.   = x(u)y.  < 0 from which follows y.    ■ 0.   This way, however, by bringing 

a.   into the basis we would reach a bad point, but the set does not have a bad point. 

2. If y(u) * 0, y(z) = 0, then v(z) = - oc and thus (17) is true. 

3. li y(u) * 0, and y(z) * 0, then (17) follows from (22). 
With this our statement about the case T.2 has been proved.   This proof alsc proves 

the penultimate paragraph of the section on the simplex method of solving simple problems. 

Proof for the T.3 Case.  To maintain the assumption in (14), let us assume that vector 

a.   (k  = m + 1) is the one for which 

(23) ^ = x(u)yk - y(u/xk >0, 

and a^, in terms of the given basis, has no positive coordinates, that is, 

m 
(24) 

where 

(25) b.k-  0, (j = l,2,...,m). 

Through multiplying Eq. (24) by a number A   > 0 and by adding Eq. (14) to it, we obtain 

m 

j = l 
(VAbjk) vXak = V 

By considering (25), u. - Ab,, > 0, and thus the following, 



HYPERBOLIC  PROGRAMMING 149 

7.* ^Uj-Ab^, u2-Ab2k,...,um-Abmk>0,...,Ak,...,0]. 

is a possible solution.   The positive coordinates of this may take on any large value; therefore 
the set L is not bounded in this case. 

Let us consider the function x evaluated at the point z: 

X(Z)   = 2]   C^Uj  - Abjk)  * Ack - C0   = ^   Vj  " Co " A 

j=l j=l 

m 

Z-  cjbjk'Ck =  X(u)  - Axk 

Similarly y(z) expressed, provides 

(26) v(z) 
x(u) - Axk 

y(u) - Ayk 

The value of v(z) increases with the Increase of A, since considering (23) 

av      x(u)yk-y(u)xk 

^A [y(u) - Ayk]: 

Since 

y(2) = y(u) - Ayk _ 0, 

inequality must hold at any A     0, it follows that 

yk^0: 

1.   If yk = 0, then 

v(z) 
x(u) - Aj^ 

y(u) 

and according to (23) j-y(u)xk 1   • 0, therefore xk < 0.   Thus with the increase of A, v(z) in- 

creases without bound. 

2.   If Vi. ^ 0. then, as can be easily shown, 

\ 
v(z) < — =    lim     v(z). 

yk      A   .+ x 

Therefore the function v is bounded from above on the set L, its lowest bound is \/yi.,* but 
it does not reach this value on any finite point of the set  L.   With this our statements for the 
T.3 case are proved. 

♦If au   is the only vector sat isfying the assumptions  in  T.3.   If there  arc more  such JL ii ■^uz»  ak ' 
vectors then the least upper bound is max x^f/y^f (f r   1. ^. . • • ■  ' ). 
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Solution of the Singular Case 
In the singular case the set L has singular points where the fractional function v is 

not interpreted, since both its numerator and denominator become 0.   From a practical point 
of view this kind of problem should be considered solvable when there is such a point among 
the nonsingular points of the set L where the function v reaches its maximum value.   We stated 
that if the set L has no bad points then there is always a solution in this sense.   (In other words, 
even though the function has no boundary value in the singular point, it has lim. sup.) 

To solve the singular case we start out from the tableau that was obtained in step 4(c) 
of "Preparation of the Solution:   Differentiation of the Cases," in which y = 0 and x = 0.   (Sin- 
gular ^bleau.)   From this it follows that in the last row of the singular tableau all t, = 0 can 
be found.   We have to return to the y.  and x, values when examining the tableau: 

1. The singular tableau, considering the minimum of the function y, is an optimal one, 
therefore each y. s 0.   (But among these there is y.   < 0, otherwise there were y = 0.) 

2. The singular tableau is an optimal one for the maximum problem of the function x 
which is enlarged bv the assumption d*u = d , i.e., for all such vectors to which yi. = 0 value 
belongs, x», - 0. 

There are two kinds of singular tableaux: 
5.1. Some vector, having yi. ^ 0 and maximum x./y.   value has positive coordinates. 

Bringing this vector into the base we obtain an optimal solution immediately. 
5.2. No vector, having Vi. *- 0 and maximum x-/y,   value, has positive coordinates. 

As described below, we can again obtain an optimal (not basic) solution. 
Proof for the S.l Case.   We proved in the T.2 case that a tableau is nonsingular and 

optimal if (1) y     0 and (2) t.      0 (i = 1, 2,..., n). 
1. After bringing in the a.   vector acceptable to the conditions in the S.l case, the 

changed y' value of the new tableau will be positive 

y" = y - öyk = - 6yk - o, 

since yk < 0.   Therefore the new tableau is not singular. 
2. We obtain the altered t| values as follows: 

bgi 1 0.  =   , where g is the index of the vector that was taken out of the basis. } 1   V I 
t; = x'y; - y'«; = - »^(y, • \yk) • »yjx, - 5,^) = - 6{Vi - Vi). 

In order to prove that t| ■   0 for all i, we have to show that 

(27) wy^i'0 

for all  i, unless 

(28) 
y* ' y* 
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for all such i when the latter fraction is finite and not undetermined (i.e., If we brought in the 

vector having a maximal x./yj. 

Regarding the statement In (27), 

1. Is trivial in case Yi = xi = 0» 
2. case y. = 0, x, ^ 0 was excluded, 

3. is true in case y   = 0, Xj   • 0 because y.   < 0, and 

4. in case yt     0, x.^ Is finite and thus (27) follows from (28). 

With this we proved that we reached an optimal tableau in the given manner. 

Proof for the S.2 Case.   Let us choose a vector a. , (y. < 0; b-  ^ 0, j = 1, 2, ..., m) 

for which x./y.   value is maximal compared to all finite x./y, values; i.e., (28) holds. 

Thus, as we saw in the proof of the S. 1 case, 

(27) ^yi - ykxl i = 1,2, ...,n, 

is true for all i.   Let us assume that the basis of the singular tableau happens to be a., 

8* = [8l»82 8m'0' •••'0]- 

a„, and the solution In it Is m 

Therefore, 

x(s) = y(8)  = 0, 

Let us now formulate the solution 

(29) u* = 
(k) 

61 " Ablk'82 - Ab2k 8m-Abmk'0-   •'  A'---0 

where A IS an arbitrary positive number.   We showed In the proof of the T.3 case that the 

solution u is possible. 

On the example of (26) we can see that 

X(S)  - AX. X. 
(30) v(u) =  2 = J*  . 

y(8)-Ayk       yk 

Now we will show that the solution u is optimal too.   If 

z* = [zj, z2, ..., znJ 

Is an arbitrary possible solution for which y(z)   - 0, then 

(31) v(u)   - v(z). 

We multiply both sides of the inequality in (27) by z.  and add from i = 1 to i = n, 

n n 
(32) "k H Vi " yk L xizr 

i=l 1=1 
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n 

L 
1=1 

y*2 
i-J 

can be changed, on the example of (20), to 

Similarly, 

n 

^ Vj Zj = y(8) - y(z) = - y(z) 
ill 

n 
^^ XJZJ  =  - x(z). 
i=l 

Thus from (32) we have 

-xky(z) - - ykx(z). 

Thus taking into consideration that yu ^ 0 and y(z) > 0 

^k      x(z) 

yk     y(z)' 

Therefore, considering (30), (31) is true and the solution of (29) is optimal. 
We thus proved our statement for the S.2 case and at the same time produced the method 

for an optimal solution.  With this Theorem 4, the existence theorem, was also proved. 

Supplements 
In this section we wish to give supplementary background, without proof, that is to say 

we wish to give solutions to a few problems that arise during hyperbolic programming. 
The Case of Degeneracy.   The degeneracy depends on the mutual position in space of 

the polyhedron generated by the column vectors of the matrix A and the a   vector. This posi- 
tion is the same in both hyperbolic and linear programming.   It can be presumed that the 
degeneracy problems arising in the course of hyperbolic programming can usually be solved 
with the aid of the perturbation method worked out by Charnes [l J.   We have to call attention, 

however, to the fact that in case of degeneracy the handling of singular tableaux becomes more 
complicated when the solution of the problem might be reached only by computing more suc- 
cessive singular tableaux.   It remains to be examined whether in this case the perturbation 

method is appropriate for avoiding cycling. 
The Enlarged Problem.   In case not only 

inequalities, but also 

a,, u, 4 ai0u0-f . .. ♦ a.   u   - a.    -    0 ll   1       12   2 in   n       IO 

ailul + ai2u2+-+ainun-alo 
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equations appear In the original conditions, we can change Au ^ a    Into Au + E r = a .   This 
way we obtain a starting solution easily and ensure the linear Independence of the row vectors 
of the enlarged [AE] matrix. 

This way, however, the problem is interpreted on an enlarged set L' rather than on the 

original set L.   If, originally, there were equations (and not Inequalities) In rows J«, 1«» •• • it 
then, In order to obtain optimal solution on the original L only, we would have to ensure that 

T..    =   TlM   =   .   .   .    =   T..    =0 
jl        j2      • • •        ]t 

be In the optimal solution.   For this reason the function to be maximized must be brought Into 
the following form: 

c1u1 + c2u2-...*cnun-NT.1-...-NT.1-Co 

dlul + d2u2 + + Vn - do 

where N Is a very large pobitlve number.  As In linear programming there Is no need for the 
numerical definition of N.   The simplex tableau, however, must be enlarged by two rows which 
contain the coefficient of N in the expressions x. and t . 

All Optimal Solutions.  In hyperbolic programming all optimal points form a convex set 
which has a finite number of extreme points.   No extreme points belong to the set of optimal 
points In the S.2 singular case, since the optimum set is generated partially by Infinitely dis- 
tant points and partially by singular points. 

The method for the definition of all optimal solutions is presented only for the case 
where the set of optimal points Is bounded.   If, in the procedure to be described, we reach an 
optimal tableau, having a vector for which t = 0 and all of Its coordinates are not positive, 
then the set of optimal points is not bounded.   This criterion holds even when we arrive at a 
singular tableau while determining all optimal points.   (In the S.2 case, as we know, the optimal 
set is not bounded.) 

If the above described case does not present itself then the set of all optimal points is 
bounded.  In this case the extreme points of the set of optimal points can be obtained by start- 
ing from an optimal tableau and successively bringing into the basis all those vectors for 
which t = 0.   In the meanwhile we may also obtain singular tableaux which should be taken into 
considerations in further operations.  All optimal solutions can be obtained as convex linear 
combinations of solutions from all tableaux with the constraint that the coefficients of solutions 
from all nonsingular tableaux cannot be zero. 

The image of the set of all optimal points may be: 
1. an extreme point of the set R (Figure 10); 
2. the closed line segment connecting two neighboring extreme points of the set R 

(Figure 11); 
3. a half radius originating from one extreme point of the set R (Figure 12); 
4. a half-open line segment connecting the origin with an extreme point of the set R 

(Figure 6); and 
5. an open half radius starting from the origin (Figure 7). 

Cases 3 and 5 can occur only when the set L is not bounded.   Cases 4 and 5 can occur if, and 
only if, there is a singular one among the tableaux. 
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